Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 15(4)2023 03 23.
Article in English | MEDLINE | ID: covidwho-2290598

ABSTRACT

After an incubation period of weeks to months, up to 14% of cats infected with feline coronavirus (FCoV) develop feline infectious peritonitis (FIP): a potentially lethal pyogranulomatous perivasculitis. The aim of this study was to find out if stopping FCoV faecal shedding with antivirals prevents FIP. Guardians of cats from which FCoV had been eliminated at least 6 months earlier were contacted to find out the outcome of their cats; 27 households were identified containing 147 cats. Thirteen cats were treated for FIP, 109 cats shed FCoV and 25 did not; a 4-7-day course of oral GS-441524 antiviral stopped faecal FCoV shedding. Follow-up was from 6 months to 3.5 years; 11 of 147 cats died, but none developed FIP. A previous field study of 820 FCoV-exposed cats was used as a retrospective control group; 37 of 820 cats developed FIP. The difference was statistically highly significant (p = 0.0062). Cats from eight households recovered from chronic FCoV enteropathy. Conclusions: the early treatment of FCoV-infected cats with oral antivirals prevented FIP. Nevertheless, should FCoV be re-introduced into a household, then FIP can result. Further work is required to establish the role of FCoV in the aetiology of feline inflammatory bowel disease.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/prevention & control , Retrospective Studies , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
J Feline Med Surg ; 24(9): 905-933, 2022 09.
Article in English | MEDLINE | ID: covidwho-2283901

ABSTRACT

CLINICAL IMPORTANCE: Feline infectious peritonitis (FIP) is one of the most important infectious diseases and causes of death in cats; young cats less than 2 years of age are especially vulnerable. FIP is caused by a feline coronavirus (FCoV). It has been estimated that around 0.3% to 1.4% of feline deaths at veterinary institutions are caused by FIP. SCOPE: This document has been developed by a Task Force of experts in feline clinical medicine as the 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines to provide veterinarians with essential information to aid their ability to recognize cats presenting with FIP. TESTING AND INTERPRETATION: Nearly every small animal veterinary practitioner will see cases. FIP can be challenging to diagnose owing to the lack of pathognomonic clinical signs or laboratory changes, especially when no effusion is present. A good understanding of each diagnostic test's sensitivity, specificity, predictive value, likelihood ratio and diagnostic accuracy is important when building a case for FIP. Before proceeding with any diagnostic test or commercial laboratory profile, the clinician should be able to answer the questions of 'why this test?' and 'what do the results mean?' Ultimately, the approach to diagnosing FIP must be tailored to the specific presentation of the individual cat. RELEVANCE: Given that the disease is fatal when untreated, the ability to obtain a correct diagnosis is critical. The clinician must consider the individual patient's history, signalment and comprehensive physical examination findings when selecting diagnostic tests and sample types in order to build the index of suspicion 'brick by brick'. Research has demonstrated efficacy of new antivirals in FIP treatment, but these products are not legally available in many countries at this time. The Task Force encourages veterinarians to review the literature and stay informed on clinical trials and new drug approvals.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cat Diseases/diagnosis , Cat Diseases/drug therapy , Cats , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/drug therapy
3.
J Biol Chem ; 299(3): 102976, 2023 03.
Article in English | MEDLINE | ID: covidwho-2220925

ABSTRACT

Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Nucleocapsid Proteins , Virus Replication , Animals , Cats , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Culture Techniques , Coronavirus, Feline/drug effects , Coronavirus, Feline/physiology , Feline Infectious Peritonitis/drug therapy , RNA, Viral/genetics , Virus Replication/drug effects
4.
J S Afr Vet Assoc ; 93(2): 112-115, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1989040

ABSTRACT

Historically, feline infectious peritonitis (FIP) has been considered almost invariably fatal. The recent COVID-19 pandemic has fuelled research in coronavirus pathophysiology and treatment. An unintended consequence is that we now have an effective treatment accessible for FIP. This paper reports on the successful resolution of immunohistochemistry-confirmed effusive FIP in an adolescent cat in South Africa following monotherapy with remdesivir at 4.9-5.6 mg/kg daily for 80 days.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Coronavirus, Feline/drug effects , Feline Infectious Peritonitis/drug therapy , South Africa , COVID-19 Drug Treatment
5.
Viruses ; 14(8)2022 08 06.
Article in English | MEDLINE | ID: covidwho-1979411

ABSTRACT

Feline coronaviruses (FCoVs) infect cats worldwide and cause severe systemic diseases, such as feline infectious peritonitis (FIP). FIP has a high mortality rate, and drugs approved by the Food and Drug Administration have been ineffective for the treatment of FIP. Investigating host factors and the functions required for FCoV replication is necessary to develop effective drugs for the treatment of FIP. FCoV utilizes an endosomal trafficking system for cellular entry after binding between the viral spike (S) protein and its receptor. The cellular enzymes that cleave the S protein of FCoV to release the viral genome into the cytosol require an acidic pH optimized in the endosomes by regulating cellular ion concentrations. Ionophore antibiotics are compounds that form complexes with alkali ions to alter the endosomal pH conditions. This study shows that ionophore antibiotics, including valinomycin, salinomycin, and nigericin, inhibit FCoV proliferation in vitro in a dose-dependent manner. These results suggest that ionophore antibiotics should be investigated further as potential broad-spectrum anti-FCoV agents.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Anti-Bacterial Agents/pharmacology , Cats , Cell Proliferation , Coronavirus, Feline/genetics , Feline Infectious Peritonitis/drug therapy , Ionophores/pharmacology
6.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: covidwho-1903483

ABSTRACT

As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Adenosine/analogs & derivatives , Animals , Cats , Coronavirus, Feline/genetics , Feces , Feline Infectious Peritonitis/drug therapy , Furans , Mutation , RNA, Viral/genetics
7.
Viruses ; 12(5)2020 05 24.
Article in English | MEDLINE | ID: covidwho-1726014

ABSTRACT

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 µM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 µM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Hydroxychloroquine/pharmacology , Interferon Type I/pharmacology , Analysis of Variance , Animals , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Cats , Cell Line/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus, Feline/pathogenicity , Drug Combinations , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Fluorescent Antibody Technique/veterinary , Hydroxychloroquine/therapeutic use , Hydroxychloroquine/toxicity , Interferon Type I/therapeutic use , Interferon Type I/toxicity , Virulence
9.
Res Vet Sci ; 130: 222-229, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-761807

ABSTRACT

Feline coronavirus (FCoV) is common among cats living indoors in groups. In about 10% of infected cats, a potentially lethal disease, feline infectious peritonitis (FIP) occurs. Virus transmission is faecal-oral. Mutian® Xraphconn (Mutian X) is a product marketed to treat cats with FIP but is also being used to stop virus shedding, although no clear guidelines exist for its use for this purpose. The aim of this study was to establish the minimum dose and treatment duration required to ensure viral clearance from the faeces of asymptomatic virus-shedding cats. In five multicat households, 29 cats naturally infected with FCoV and actively shedding virus in the faeces were given Mutian X pills. Virus shedding was monitored using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) controlled for faecal inhibitors to ensure sensitivity. Mutian X given orally cleared the virus in 29 cats; although four cats required a repeated course to finally stop virus shedding. A dose of 4 mg/kg q24 h for four days was found to be the optimal treatment protocol: 2 mg/kg cleared only 80% of cats. Post-treatment using a sensitive RT-qPCR test was essential to ensure that virus clearance had been achieved, since failure to clear even one cat can result in re-infection of the others. Records of virus shedding by cats before treatment provided a retrospective control: significantly more cats stopped shedding virus after Mutian X than recovered from infection during the control period (p < .00001). This is the first report of the successful elimination of faecal FCoV shedding in chronically infected cats.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus, Feline/drug effects , Feline Infectious Peritonitis/drug therapy , Virus Shedding/drug effects , Administration, Oral , Animals , Cats , Feces/virology , Retrospective Studies
10.
Vet Q ; 40(1): 322-330, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-900144

ABSTRACT

Feline infectious peritonitis (FIP) is a viral-induced, immune-mediated disease of cats caused by virulent biotypes of feline coronaviruses (FCoV), known as the feline infectious peritonitis virus (FIPV). Historically, three major pharmacological approaches have been employed to treat FIP: (1) immunomodulators to stimulate the patient's immune system non-specifically to reduce the clinical effects of the virus through a robust immune response, (2) immunosuppressive agents to dampen clinical signs temporarily, and (3) re-purposed human antiviral drugs, all of which have been unsuccessful to date in providing reliable efficacious treatment options for FIPV. Recently, antiviral studies investigating the broad-spectrum coronavirus protease inhibitor, GC376, and the adenosine nucleoside analogue GS-441524, have resulted in increased survival rates and clinical cure in many patients. However, prescriber access to these antiviral therapies is currently problematic as they have not yet obtained registration for veterinary use. Consequently, FIP remains challenging to treat. The purpose of this review is to provide an update on the current status of therapeutics for FIP. Additionally, due to interest in coronaviruses resulting from the current human pandemic, this review provides information on domesticated cats identified as SARS-CoV-2 positive.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/drug therapy , Immunologic Factors/therapeutic use , Pandemics/veterinary , Pneumonia, Viral/veterinary , Animals , COVID-19 , Cats , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , SARS-CoV-2
11.
Viruses ; 12(11)2020 10 27.
Article in English | MEDLINE | ID: covidwho-895406

ABSTRACT

This is the first report of a successful treatment of a non-effusive feline infectious peritonitis (FIP) uveitis case using an oral adenosine nucleoside analogue drug and feline interferon omega, and alpha-1 acid glycoprotein (AGP) as an indicator of recovery. A 2-year-old male neutered Norwegian Forest Cat presented with uveitis, keratic precipitates, mesenteric lymphadenopathy and weight loss. The cat was hypergammaglobulinaemic and had a non-regenerative anaemia. Feline coronavirus (FCoV) RNA was detected in a mesenteric lymph node fine-needle aspirate by a reverse-transcriptase polymerase chain reaction-non-effusive FIP was diagnosed. Prednisolone acetate eye drops were administered three times daily for 2 weeks. Oral adenosine nucleoside analogue (Mutian) treatment started. Within 50 days of Mutian treatment, the cat had gained over one kilogram in weight, his globulin level reduced from 77 to 51 g/L and his haematocrit increased from 22 to 35%; his uveitis resolved and his sight improved. Serum AGP level reduced from 3100 to 400 µg/mL (within normal limits). Symmetric dimethylarginine (SDMA) was above normal at 28 µg/dL, reducing to 14 µg/dL on the cessation of treatment; whether the SDMA increase was due to FIP lesions in the kidney or Mutian is unknown. Mutian treatment stopped and low-dose oral recombinant feline interferon omega begun-the cat's recovery continued.


Subject(s)
Adenosine/therapeutic use , Feline Infectious Peritonitis/drug therapy , Interferon Type I/therapeutic use , Nucleosides/therapeutic use , Uveitis/drug therapy , Uveitis/veterinary , Adenosine/analogs & derivatives , Animals , Antiviral Agents/therapeutic use , Arginine/analogs & derivatives , Arginine/blood , Cats , Coronavirus, Feline/drug effects , Coronavirus, Feline/isolation & purification , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/virology , Glycoproteins/metabolism , Male , Uveitis/diagnosis
12.
Antiviral Res ; 182: 104927, 2020 10.
Article in English | MEDLINE | ID: covidwho-746118

ABSTRACT

Feline infectious peritonitis (FIP) which is caused by feline infectious peritonitis virus (FIPV), a variant of feline coronavirus (FCoV), is a member of family Coronaviridae, together with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. So far, neither effective vaccines nor approved antiviral therapeutics are currently available for the treatment of FIPV infection. Both human and animal CoVs shares similar functional proteins, particularly the 3CL protease (3CLpro), which plays the pivotal role on viral replication. We investigated the potential drug-liked compounds and their inhibitory interaction on the 3CLpro active sites of CoVs by the structural-bases virtual screening. Fluorescence resonance energy transfer (FRET) assay revealed that three out of twenty-eight compounds could hamper FIPV 3CLpro activities with IC50 of 3.57 ± 0.36 µM to 25.90 ± 1.40 µM, and Ki values of 2.04 ± 0.08 to 15.21 ± 1.76 µM, respectively. Evaluation of antiviral activity using cell-based assay showed that NSC629301 and NSC71097 could strongly inhibit the cytopathic effect and also reduced replication of FIPV in CRFK cells in all examined conditions with the low range of EC50 (6.11 ± 1.90 to 7.75 ± 0.48 µM and 1.99 ± 0.30 to 4.03 ± 0.60 µM, respectively), less than those of ribavirin and lopinavir. Analysis of FIPV 3CLpro-ligand interaction demonstrated that the selected compounds reacted to the crucial residues (His41 and Cys144) of catalytic dyad. Our investigations provide a fundamental knowledge for the further development of antiviral agents and increase the number of anti-CoV agent pools for feline coronavirus and other related CoVs.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Coronavirus, Feline/enzymology , Cysteine Proteinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Animals , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Catalytic Domain , Cats , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Drug Evaluation, Preclinical/methods , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Humans , Inhibitory Concentration 50 , Kinetics , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/enzymology , Models, Molecular , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
13.
J Vet Intern Med ; 34(4): 1587-1593, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-343296

ABSTRACT

Feline infectious peritonitis (FIP) is caused by a mutant biotype of the feline enteric coronavirus. The resulting FIP virus (FIPV) commonly causes central nervous system (CNS) and ocular pathology in cases of noneffusive disease. Over 95% of cats with FIP will succumb to disease in days to months after diagnosis despite a variety of historically used treatments. Recently developed antiviral drugs have shown promise in treatment of nonneurological FIP, but data from neurological FIP cases are limited. Four cases of naturally occurring FIP with CNS involvement were treated with the antiviral nucleoside analogue GS-441524 (5-10 mg/kg) for at least 12 weeks. Cats were monitored serially with physical, neurologic, and ophthalmic examinations. One cat had serial magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis (including feline coronavirus [FCoV]) titers and FCoV reverse transcriptase [RT]-PCR) and serial ocular imaging using Fourier-domain optical coherence tomography (FD-OCT) and in vivo confocal microscopy (IVCM). All cats had a positive response to treatment. Three cats are alive off treatment (528, 516, and 354 days after treatment initiation) with normal physical and neurologic examinations. One cat was euthanized 216 days after treatment initiation following relapses after primary and secondary treatment. In 1 case, resolution of disease was defined based on normalization of MRI and CSF findings and resolution of cranial and caudal segment disease with ocular imaging. Treatment with GS-441524 shows clinical efficacy and may result in clearance and long-term resolution of neurological FIP. Dosages required for CNS disease may be higher than those used for nonneurological FIP.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Antiviral Agents/therapeutic use , Feline Infectious Peritonitis/drug therapy , Adenosine Triphosphate/administration & dosage , Adenosine Triphosphate/therapeutic use , Animals , Antiviral Agents/administration & dosage , Cats , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL